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Abstract

The anisotropy of the viscosity and shear-induced structural changes are studied via

Non-Equilibrium Molecular Dynamics (NEMD) simulations for two types of model

liquid crystals which possess both isotropic and smectic phases. These models are i)

perfectly oriented Gay–Berne particles and ii) r−12-soft-spheres plus a r−6-interaction

with a P2-anisotropy. Results are presented for the Miesowicz viscosity coefficients in

the nematic phase. Presmectic effects are observed. Structural changes are revealed by

snapshots of configurations and by the static structure factor, presented in analogy to

scattering experiments. The shear-induced transition from the smectic to the nematic

phase is analyzed. Similarities between magneto-rheological fluids and discotic systems

which can form columnar phases are discussed.

KEY WORDS: nematic and smectic liquid crystals; non-equilibrium molecular dynam-

ics simulation; phase transition; rheology; structure of fluids; viscosity
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1 Introduction

The flow behavior of liquid crystals is rather complex even in the Newtonian regime of

‘small’ shear rates. Orienting external magnetic or electric fields render the viscosity

anisotropic [1]–[3]. In addition to the shear and bulk viscosity of simple fluids, more co-

efficients are needed to characterize the viscous behavior. The total number of viscosity

coefficients is seven in the nematic phase and still larger in smectic phases. Pre- and

post-transitional effects are observed in the vicinity of phase transitions, e.g. nematic–

smectic A. Basic features of the anisotropy of the viscosity can be inferred from model

fluids composed of perfectly oriented non-spherical particles. Analytical calculations

and non-equilibrium molecular dynamics (NEMD) computer simulations have been

performed for (prolate and oblate) ellipsoidal particles [3]–[5]. These special model

fluids possess nematic and crystalline phases, but no smectic ones. Here results are

presented for two other relatively simple types of model fluids which have nematic and

smectic phases. This allows the study of pre-transitional effects on the anisotropy of

the viscosity of the nematic phase and the analysis of shear-induced structural changes

in the vicinity of the transition to a smectic state.

After some basic remarks on the flow geometry, the viscosities of nematics, the

affine transformation model and on the simulation technique, the model potentials to

be used for the present studies are introduced and results are presented. Previous MD

and NEMD simulations for the viscosity of the Gay–Berne fluid in the nematic state

should be mentioned [6], [7].
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2 Basics

2.1 Plane Couette Flow

For a simple shear flow in x-direction with the gradient in y-direction, the shear rate

γ is given by γ = ∂vx
∂y
. Such a flow can be be generated either by moving boundaries

or forces, or as used here, by moving image particles undergoing an ideal Couette flow

with the prescribed shear rate (homogeneous shear). The periodic boundary conditions

have to be modified: Lees–Edwards boundary conditions, [8]. For a system in a fluid

state in equilibrium and for not too large shear rates, a linear velocity profile typical

for a plane Couette flow is set up. At high shear rates, where also plug-like flow occurs,

it is essential to use a velocity ‘profile unbiased thermostat’ (PUT, [9], [10]). A shear

flow can also be generated by modifying the equations of motion (SLLOD, [11], [12],

[8]). For a recent review of NEMD results for rheological properties of simple and of

complex fluids, see [13].

2.2 Pressure Tensor, Viscosity

Rheological properties such as the (non-Newtonian) viscosity and the normal pressure

differences are obtained from the Cartesian components of the stress tensor σµν = −pµν

or of the pressure tensor pµν , which is the sum of ‘kinetic’ and ‘potential’ contributions:

pµν = pkinµν + ppotµν ,

V pkinµν =
∑
i

mic
i
µc
i
ν , V p

pot
µν =

1

2

∑
ij

rijµ F
ij
ν . (1)

Here ci is the peculiar velocity of particle i, i.e. its velocity relative to the flow velocity

v(ri), rij = ri − rj is the relative position vector of particles i, j and Fij is the force

acting between them. The Greek subscripts µ, ν, which assume the values 1, 2, 3, stand

for Cartesian components associated with the x, y, z-directions. In the simulations,
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the expression for the pressure tensor given is averaged over many (103 to 106) time

steps. For the present flow geometry, the (non-Newtonian) viscosity η is obtained by

dividing the yx(21)-component of the stress or pressure tensor by the shear rate γ:

η = σyx/γ = −pyx/γ . The kinetic contribution to the viscosity is the dominating

one in dilute gases. In dense fluids (liquids) the potential contribution is the more

important one.

2.3 Anisotropy of the Viscosity in Nematic Liquid Crystals

In nematic liquid crystals, the viscosity becomes anisotropic when the average direction

of the molecules is fixed by an external magnetic (or electric) field. Four directions are

needed to determine the full anisotropy of the shear viscosity. These cases, indicated

by the labels i = 1, 2, 3, 4 for the pertaining shear viscosities ηi, are the preferential

direction chosen parallel to the flow velocity (i = 1), to its gradient (i = 2), to the

vorticity which is perpendicular to both (i = 3), and to the bisector in the flow plane

(xy-plane) (i = 4). The first three viscosities are referred to as Miesowicz coefficients,

the difference η12 = 4η4−2η1−2η2 being called the Helfrich viscosity [1]. In substances

like MBBA or the mixture N4, which exist in the nematic state over a rather wide

temperature interval, one has η2 > η3 > η1. Except in the immediate vicinity of

the nematic-isotropic phase transition temperature TNI, where the nematic (Maier–

Saupe) order parameter S varies strongly, the ratios η2/η3 and η3/η1 are practically

independent of the temperature T . Thus the computationally simpler model fluids of

perfectly oriented particles (corresponding to S = 1) reveal many features typical for

the anisotropy of the viscosity of nematic liquid crystals. In the NEMD-simulation,

the viscosities are obtained according to

ηi = −piyx/γ , (2)
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where piyx is the yx-component of the pressure tensor, cf. (1), for the four above men-

tioned cases. Of course, the interaction potential must be modified appropriately in

order to describe non-spherical particles. Special cases of non-spherical interaction

potentials are given later. In the oriented system, the pressure tensor has an antisym-

metric part, which is associated with the torque acting on the particles. This antisym-

metric part is used in NEMD simulations to obtain the Leslie viscosity coefficients γ1

and γ2 according to

γ1 + γ2 = 2(p1
xy − p

1
yx)/γ , γ1 − γ2 = 2(p2

xy − p
2
yx)/γ , (3)

where again the superscripts 1, 2 refer to the orientations mentioned above. Due to the

Onsager–Parodi relation γ2 = η1−η2 , only five of the six ‘nematic’ viscosity coefficients

used so far are linearly independent. In addition to the bulk viscosity, there are two

coefficients, also linked by an Onsager relation, which couple the symmetric traceless

and the trace parts of the pressure and of the velocity gradient tensors. Hence seven

coefficients are needed to describe the viscous properties of nematic liquid crystals [3].

2.4 Affine Transformation Model

All coefficients, except for the bulk viscosity, have been calculated and the Onsager–

Parodi relation has been tested for model fluids of perfectly oriented ellipsoidal particles

where the non-spherical interaction potential is obtained from a spherical one, e.g. a

LJ- or SS-interaction, by an affine transformation. Both prolate and oblate ellipsoids

of revolution with axis ratios Q > 1 and Q < 1, respectively, were studied [3]–[5].

Motivated by the success in the comparison of MD-data for the anisotropy of the

diffusion in model fluids having a variable degree of orientation with a modified affine

transformation model [15], similar considerations have been made for the viscosity

coefficients [16].
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The affine transformation model states that for perfectly oriented ellipsoidal parti-

cles with a molecular axis ratio Q thefollowing relationships exist [3],[4],[14]

Q−2ηpot2 = ηpot3 = Q2ηpot1 , ηpot12 = −γ1 , (4)

γ1 = (Q−Q−1)ηpot3 , γ2 = (Q−2 −Q2)ηpot3 , (5)

whereby the superscript ‘pot’ denotes the contribution due to the potential. The in-

equalities

η1 < η3 < η2 , γ2 < 0 , (6)

typical for nematics (Q > 1) are also found in the simulations. For nematic discotics

(Q < 1) one has

η2 < η3 < η1 , γ2 > 0 . (7)

This is also confirmed in the simulations for nematic discotics [5].

In the nematic phase, the results of the affine transformation model can be used

estimate the viscous properties of more general model fluids, such as the Gay–Berne

potential. If the model potential also allows smectic phases to occur, disc-like clusters

of molecules are expected to occur in the nematic phase close to the transition to the

smectic one as precursors to the smectic layers. Provided these clusters behave as

oblate molecules in the nematic phase, the typical nematic order in the magnitude of

the viscosity coefficients (6) should change to a the nematic discotic order (7) when

the nematic–smectic transition is approached. Indications of such a behavior are seen

in experiments with a substance referred to as 8CBP [2].
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3 Perfectly Oriented Gay–Berne Fluid

3.1 The Model

The intermolecular potential as a function of the intermolecular vector r and the orien-

tation n for the perfectly oriented Gay–Berne (POGB) model has the following form:

Φ(n, r) = 4ε(n, r)

( σ0

r − σ(n, r) + σ0

)12

−

(
σ0

r − σ(n, r) + σ0

)6
 , (8)

whereby the shape parameter, σ(n, r), is given by

σ(n, r) = σ0

(
1− χ′

{
(r · n)2

r2 [1 + χ′]

})−1/2

(9)

and the interaction strength, ε(n, r), by

ε(n, r) = ε0ε1
νε2

µ(n, r) , ε1 =
[
1− χ2

]−1/2
, ε2(n, r) = 1− χ′

{
(r · n)2

r2 [1 + χ′]

}
. (10)

Here ε0 and σ0 are the characteristic energy and molecular diameter of the Lennard–

Jones potential. The parameter χ depends on the ratio κ = σee/σss, where σee is the

length of the molecule and σss the width. The parameter χ′ depends on the ratio

κ′ = εee/εss, where εee and εee are the minima of the potential for the side-side and

end-end configurations, respectively. The values of the various parameters used were:

µ = 2, ν = 1,κ = 3 and κ′ = 5.

The potential was cut off and shifted at r = 4σ in order to remove the discontinuity.

The simulations were performed using 256 particles in a cubic box with Lees–Edwards

boundary conditions and a simple velocity scaling thermostat. A Verlet velocity algo-

rithm was used to solve the equations of motion. Simulations for larger systems are in

progress.
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3.2 Phases and Local Order

In addition to the nematic phase, which also occurs if the molecules are free to rotate,

the perfectly oriented Gay–Berne fluid exhibits two equilibrium phases not seen in

simulations of the full Gay–Berne model [17]: SmA and a SmB ‘quadratic’, a layered

phase with short-range 4-fold order within the layers (Fig. 1). The nematic and the

smectic states were subjected to a shear flow. A tilted SmB hexatic phase also occurs.

The SmB ‘quadratic’ phase is found to be metastable: In the case where the orientation

is parallel to the velocity gradient, low shear rates result in a tilting of the layers with

respect to the director together with a change in symmetry within the layers. The

resulting tilted SmB hexatic phase remains stable after the shear is switched off.

X

Y
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Y

Z
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Y

X

Y

Y

Z

Figure 1: T = 1.00: A snapshot and static structure factors for the xy and yz planes.

Top: ρ = 0.28, SmA. Bottom: ρ = 0.29, 4-fold order within layers.
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3.3 Viscosities

Miesowicz viscosities have been obtained for the nematic and presmectic regions (Fig. 2).

The lowest viscosity is that for the orientation parallel to the shear velocity, η1, the

largest occurring for the orientation parallel to the velocity gradient, η2, as the affine

transformation model predicts. However, the expected reordering of the Miesowicz co-

efficients from η2 < η3 < η1 in the nematic phase to η1 < η3 < η2 in the smectic A phase

is not observed due to the shear-induced tilt transition for small shear rates (Fig. 3).

One can observe, however, that for ρ = 0.29 and γ = 0.02 the viscosity for the orien-

tation parallel to the shear velocity approaches that for the orientation perpendicular

to both the shear velocity and its gradient. The Leslie coefficient γ1 remains smaller

than the absolute magnitude of the Leslie coefficient γ2 for both the nematic and the

smectic region, and in accordance with the affine transformation model. As expected,

γ2 is negative throughout.

According to the affine transformation model, the ratios R31 :=
√
η3/η1/Q and

R23 :=
√
η2/η3/Q both are equal to 1. The NEMD simulations for LJ-ellipsoids yielded

R31 = 0.80 and R23 = 0.91 [4]. Typical experimental values, e.g. for MBBA at 30 ◦C

are R31 = 0.52 and R23 = 0.71. For the present model one finds, in the density range

0.20 ≤ ρ ≤ 0.28, the values 0.56 ≤ R31 ≤ 0.66 and 0.70 ≤ R23 ≤ 0.81. Thus if one

compares the predictions of the affine transform model with NEMD and experimental

results, one finds the agreement between the POGB model and experiment is rather

good, particularly for lower densities. Whereas the perfect orientation tends to lead to

an increase in the effective molecular axis ratio Q, the well-depth anisotropy causes a

decrease in the effective Q.
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Figure 2: Miesowicz viscosities for T = 1.00, γ → 0.

4 Anisotropic Soft Spheres

In analogy to the ferro-fluids and magneto-rheological fluids to be discussed in the

next section, a relatively simple model was introduced [13] for liquid crystals where

a transition from the nematic to the smectic A phase is possible. A further smectic

phase (smB) also occurs in addition to the solid state. The potential is that of r−12

soft spheres (SS) and an extra anisotropic interaction with a symmetry given by the

second Legendre polynomial P2 = 3
2

(
r−2(r · n)2 − 1

3

)
and a strength determined by

the parameter Φanis:

Φ = ε0 (
σ0

r
)12 + Φanis (

σ0

r
)6
(
r−2(r · n)2 −

1

3

)
. (11)
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Figure 3: State point T = 1.00, ρ = 0.300. After 100000 time steps, a shear rate of 0.01

is applied. The shear is switched off after a further 100000 time steps and the system

allowed to relax for yet another 100000 time steps.

Again, the unit vector n (director) specifies the preferential direction. For Φanis > 0 this

potential models elongated (prolate) particles. At the state point T = 0.25, ρ = 0.6,

in SS-units, and with the interaction cut off at r = 2.5σ0, the transition nematic–

smectic A occurs at Φanis ≈ 2.3 (in units of ε0). The director n can be chosen parallel

to the directions discussed above in connection with the anisotropy of the viscosity. The

resulting Miesowicz viscosities η1,2,3 show surprisingly complex behavior as functions of

the anisotropy parameter Φanis at shear rates which are, at least for the nematic phase,

in the Newtonian flow regime [13]. The typical nematic order (6) in the magnitude

of the viscosities is found for 0 < Φanis < 1. For 1 < Φanis < 2.3, presmectic effects

change this behavior. In the smectic phase, for Φanis > 2.8, the order of the viscosities

corresponds to that of a nematic discotic system (7). The shear flow breaks the smectic

layers but disc-like correlated clusters remain. The shear induced structural changes

12



have been analyzed. The scenario of the crossing of the viscosity coefficients is even

more complex than in experiments with 8CBP, where η1 becomes larger than η3, but

does not quite reach η2 when the temperature is lowered towards the nematic–smectic

transition [2].

4.1 Magneto-Rheological Fluids

For Φanis < 0, the potential function (11) models nematic discotic substances where a

transition from the nematic to columnar phases occurs with increasing magnitude of

the non-sphericity parameter. Qualitatively, this behavior is quite similar to that of

magneto-rheological (MR) fluids (or electro-rheological (ER) fluids) in the presence of

an applied magnetic (or electric) field. Ferro-fluids and MR fluids have been modeled

by soft spheres plus a dipole-dipole interaction [18]. This corresponds to the potential

(11) with the r−6 factor of the term
(
r−2(r · n)2 − 1

3

)
replaced by−εmag (σ0

r
)3. Here, the

parameter εmag > 0 is proportional to the square of the (induced) magnetic moment of

the particles which are parallel to n. Pairs of such particles feel a disc-like interaction

since, for fixed relative kinetic energy, they can approach each other more closely

in the direction parallel to n than in the perpendicular directions. Thus it is not

surprising that ferro-fluids show an anisotropy of the viscosity analogous to nematic

discotic liquid crystals [3],[5]. When the dipole-dipole interaction is stronger, however,

chains are formed which, at higher densities, are arranged in partially ordered spatial

structures. This affects the viscous behavior in a dramatic way [13]. In the simulations,

the interaction was again cut off (smoothly) at r = 2.5r0, and N = 1000 particles were

used. At the state point T = 0.25, ρ = 0.6, in SS-units and for the shear rate γ = 0.06,

e.g., one finds the discotic behavior η1 > η2 for 0 < εmag < 3. For εmag > 3, the

viscosity η2 for the field parallel to the gradient direction increases by more than one

order of magnitude when εmag is increased from 2 to 6. A yield stress occurs for the
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higher values of the dipole-dipole interaction. This is typical for the MR fluids which

are similar to the ferro-fluids but which are composed of particles with stronger dipole-

dipole interaction and usually contain a higher volume fraction of colloidal particles.

5 Concluding Remarks

The perfectly oriented Gay–Berne potential and anisotropic soft spheres have been

used study viscous and structural properties of model fluids in the vicinity of the

nematic–smectic phase transition. Further simulations for freely orienting particles are

desirable, so that phenomena in the vicinity of the isotropic–nematic and isotropic–

smectic transitions can also be analyzed. For model fluids of short chain molecules with

a stiff central part and flexible ends which possess a broad smectic A phase [19], studies

of rheological properties and of the shear induced structural changes are in progress.
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